23 research outputs found

    Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Get PDF
    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    The dilemma of analytical method changes for soil organic carbon in long‐term experiments

    No full text
    Abstract Long‐term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired t‐test provided evidence for significant differences in the historical SOC values when compared with the re‐analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg−1 lower SOC compared with the re‐analysed one. For 1990 and 1998, this difference was about 0.4 g kg−1. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC. Highlights A total of 1059 LTE soil samples taken between 1976 and 2008 were re‐analysed for SOC in 2016 Several methodological changes for SOC determination led to significant different SOC concentration in the same sample Interpretation and time series of LTE soil data suffer from consideration of analytical method changes and poor documentation of the same Soil archive establishment, thorough method protocols and diligent proficiency testing after soil method changes ameliorate the dilemma Brandenburger Staatsministerium fĂŒr Wissenschaft, Forschung und Kultur http://dx.doi.org/10.13039/501100004581Bundesministerium fĂŒr Bildung und Forschung http://dx.doi.org/10.13039/501100004937https://doi.org/10.4228/zalf-acge-b68

    The dilemma of analytical method changes for soil organic carbon in long-term experiments

    No full text
    Long-term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired t-test provided evidence for significant differences in the historical SOC values when compared with the re-analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg−1 lower SOC compared with the re-analysed one. For 1990 and 1998, this difference was about 0.4 g kg−1. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC

    Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale

    No full text
    Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements

    Earthworm measurement plots.

    No full text
    <p>The undulating terrain of the field near Lietzen is typical for the landscape formed by the last Ice-age formed landscape in Northeastern Germany. The 42 measurement plots were distributed along four transects in the 63 ha field with 1–21 being under conventional and 22–42 under reduced tillage. The average distance between plots within the transects was 66 m.</p
    corecore